Let $\vec A\, = \,(\hat i\, + \,\hat j)\,$ and $\vec B\, = \,(2\hat i\, - \,\hat j)\,.$ The magnitude of a coplanar vector $\vec C$ such that $\vec A\cdot \vec C\, = \,\vec B\cdot \vec C\, = \vec A\cdot \vec B$ is given by
$\sqrt {\frac{5}{9}} $
$\sqrt {\frac{10}{9}} $
$\sqrt {\frac{20}{9}} $
$\sqrt {\frac{9}{12}} $
Let $\vec{A}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{B}=4 \hat{i}+j+2 \hat{k}$ then $|\vec{A} \times \vec{B}|$ is equal to ...................
Which of the following is the unit vector perpendicular to $\overrightarrow A $ and $\overrightarrow B $
$\vec{A}$ is a vector quantity such that $|\vec{A}|=$ nonzero constant. Which of the following expressions is true for $\vec{A}$ $?$